COURSE OBJECTIVES AND COURSE OUTCOMES

T. Y. B. Sc. SEMESTER - V

PHYSICS PAPER - II

SUBJECT: SOLID STATE PHYSICS (USPH502)

-

-

Т

Sr. No.	Course Objectives	Course Outcomes
1)	Describe crystal structure, Bravais lattices, crystal systems, Elements of crystal symmetry, Miller indices, Reciprocal lattice and X ray diffraction	Explain crystal structure, Bravais lattices, crystal systems, Elements of crystal symmetry, Miller indices, Reciprocal lattice and X ray diffraction
2)	Investigate classical free electron theory of metals and its drawbacks	Examine classical free electron theory of metals and its drawbacks
3)	Explain quantum theory of free electrons, Fermi Dirac Statistics, Fermi distribution function, heat capacity of electron gas and electrical conductivity from quantum mechanical considerations	Analyze quantum theory of free electrons, Fermi Dirac Statistics, Fermi distribution function, heat capacity of electron gas and electrical conductivity from quantum mechanical considerations
4)	Investigate Band theory of solids, Kronig -Penney model, Brillouin zones and distinction between metals, insulators and intrinsic semiconductors	Explain Band theory of solids, Kronig - Penney model, Brillouin zones and distinction between metals, insulators and intrinsic semiconductors
5)	Examine the behavior of charge carriers in a semiconductor and their charge densities	Analyze the behavior of charge carriers in a semiconductor and their charge densities
6)	Discuss p-n junction, p-n junction as a diode, current components in a p-n junction, Volt Ampere characteristics and temperature dependence of p-n characteristics	Understand p-n junction, p-n junction as a diode, current components in a p-n junction, Volt Ampere characteristics and temperature dependence of p-n characteristics
7)	Investigate Superconductivity, destruction of superconductivity by magnetic field, Meissner effect, BCS theory of superconductivity, Type I and Type II superconductors and Vortex state	Analyze Superconductivity, destruction of superconductivity by magnetic field, Meissner effect, BCS theory of superconductivity, Type I and Type II superconductors and Vortex state

COURSE OBJECTIVES AND COURSE OUTCOMES

T. Y. B. Sc. SEMESTER - VI

PHYSICS PAPER - II

SUBJECT: ELECTRONICS (USPH602)

Sr. No.	Course Objectives	Course Outcomes
1)	To discuss basics of semiconductor devices	Student will be able to understand working of various semiconductor devices like FET, UJT and SCR and their applications
2)	To analyse working of operational amplifiers and applications	Student will be able to develop basic circuits using operational amplifier and demonstrate its application
3)	To introduce and discuss working of multivibrators	Student will gain knowledge about different waveform generation, waveform conversion and wave shaping techniques
4)	To discuss working of power supply	Student will be able understand working of power supply and use the them more efficiently in the laboratories
5)	To discuss the working of basic logic families	Student will develop concepts of logic families and logic families and their comparative analysis
6)	To introduce concepts of digital communication	Student can gain knowledge about digital communication techniques