COURSE OBJECTIVES AND COURSE OUTCOMES

S. Y. B. Sc. SEMESTER - III

SUBJECT: CHEMISTRY PRACTICAL (USCHP3)

Sr. No.	Course Objectives	Course Outcomes
1)	To study practical applications of conductometry	Learner will gain hands on experience to use conductometry to verify Ostwald's dilution law and dissociation constant of weak acid
2)	To learn identification and separation of cations	This will enable students to use theory knowledge in practice to detect and separate cations
3)	To expose students to various titration methods	They will learn to estimate total hardness of water and investigate reaction between copper sulphate and sodium hydroxide
4)	To expose students to the preparation and purification of organic compounds	Learner will be able to independently synthesise organic compounds and also learn crystallization technique
5)	To introduce students to various quantitative analytical techniques	Students will learn quantitative determination using gravimetric and colourimetric methods

S. Y. B. Sc. SEMESTER - IV

SUBJECT: CHEMISTRY PRACTICAL (USCHP4)

Sr. No.	Course Objectives	Course Outcomes
1)	To study practical applications of potentiometry	Students will learn to determine standard emf and standard free energy change of Danniel cell potentiometrically
2)	To study chemical kinetics.	Learners will be able to compare strengths of different acids by studying rates of ester hydrolysis
3)	To introduce students to inorganic preparations	Students will learn the microscale methods of preparations
4)	To expose students to the qualitative analysis of bifunctional organic compounds	Students will be able to independently characterize solid and liquid organic compounds containing two functional groups
5)	To expose students to modern analytical methods of separation and quantification	They will get practical experience of paper chromatography, conductometry and gravimetry