UNIVERSITY OF MUMBAI

Syllabus

For the

Program: F.Y.B.Sc. Sem -I CBCS

Course: Computer Science
(Choice Based and Credit System with effect from the academic year 2021-22)

Preamble

The rise of Information and Communication Technology (ICT) has profoundly affected modern society. Increasing applications of computers in almost all areas of human endeavor has led to vibrant industries with concurrent rapid change in technology.

As the computing field advances at a rapid pace, the students must possess a solid foundation that allows and encourages them to maintain relevant skills as the field evolves. Specific languages and technology platforms change over time. Thus students must continue to learn and adapt their skills throughout their careers. To develop this ability, students will be exposed to multiple programming languages, tools, paradigms and technologies as well as the fundamental underlying principles throughout this programme.

The programme offers required courses such as programming languages, data structures, computer architecture and organization, algorithms, database systems, operating systems, and software engineering; as well as specialized courses in artificial intelligence, computer-based communication networks, distributed computing, information security, graphics, human-computer interaction, multimedia, scientific computing, web technology, and other current topics in computer science.

The core philosophy of this programme is to -

Form strong foundations of Computer Science

\square Nurture programming, analytical \& design skills for the real world problems.
$\square \quad$ Introduce emerging trends to the students in gradual way.
\square Groom the students for the challenges of ICT industry
The students these days not only aspire for a career in the industry but also look for research opportunities. The main aim of this programme is to deliver a modern curriculum that will equip graduates with strong theoretical and practical backgrounds to enable them to excel in the workplace and to be lifelong learners. Not only does it prepare the students for a career in Software industry, it also motivates them towards further studies and research opportunities. Graduating students, can thus take up postgraduate programmes in CS leading to research as well as R\&D, can be employable at IT industries, or can adopt a business management career.

In the first year i.e. for semester I \& II, basic foundation of important skills required for software development is laid. The syllabus proposes to have four core subjects of Computer science and two core courses of Mathematics-Statistics. All core subjects are proposed to have theory as well as practical tracks. While the Computer Science courses will form fundamental skills for solving computational problems, the Mathematics \& Statistics course will inculcate research-oriented acumen. Ability Enhancement Courses on Soft Skill Development will ensure an overall and holistic development of the students. The syllabus design for further semesters encompasses more advanced and specialized courses of Computer Science.

We sincerely believe that any student taking this programme will get very strong foundation and exposure to basics, advanced and emerging trends of the subject. We hope that the students" community and teachers"e fraternity will appreciate the treatment given to the courses in the syllabus.
We wholeheartedly thank all experts who shared their valuable feedbacks and suggestions in order to improvise the contents; we have sincerely attempted to incorporate each of them. We further thank Chairperson and members of Board of Studies for their confidence in us.

Special thanks to Department of Computer Science and colleagues from various colleges, who volunteered or have indirectly, helped designing certain specialized courses and the syllabus as a whole.

F.Y.B.Sc. Computer Science Syllabus
 Choice Based Credit System (CBCS)
 with effect from
 Academic year 2021-2022

Semester - II				
Course Code	Course Type	Course Title	Credits	Lectures/Week
USCS201	Core Subject	Design \& Analysis of Algorithms	2	3
USCSP201	Core Subject Practical	Design \& Analysis of Algorithms - Practical	1	3
USCS202	Core Subject	Advanced Python Programming	2	3
USCSP202	Core Subject Practical	Advanced Python Programming - Practical	1	3
USCS203	Core Subject	Introduction to OOPs using C++	2	3
USCSP203	Core Subject Practical	Introduction to OOPs using C++- Practical	1	3
USCS204	Core Subject	Database Systems	2	3
USCSP204	Core Subject Practical	Database Systems - Practical	1	3
USCS205	Core Subject	Calculus	2	3
USCSP205	Core Subject Practical	Calculus - Practical	1	3
USCS206	Core Subject	Statistical Methods	2	3
USCSP206	Core Subject Practical	Statistical Methods - Practical	1	3
USCS207	Ability Enhancement Course	E-Commerce \& Digital Marketing	2	3

Course: USCSP2	Practical of USCSP201 + USCSP202 + USCSP203+USCSP204+USCSP205+USCSP206 (Credits : 6, Lectures/Week: 18)
USCSP 201	Design \& Analysis of Algorithms 1. Programs on 1-d arrays like - sum of elements of array, searching an element in array, finding minimum and maximum element in array, count the number of even and odd numbers in array. For all such programs, also find the time complexity, compare if there are multiple methods 2. Programs on 2-d arrays like row-sum, column-sum, sum of diagonal elements, addition of two matrices, multiplication of two matrices. For all such programs, also find the time complexity, compare if there are multiple methods 3. Program to create a list-based stack and perform various stack operations. 4. Program to perform linear search and binary search on list of elements. Compare the algorithms by calculating time required in milliseconds using readymade libraries. 5. Programs to sort elements of list by using various algorithms like bubble, selection sort, and insertion sort. Compare the efficiency of algorithms. 6. Programs to select the Nth Max/Min element in a list by using various algorithms. Compare the efficiency of algorithms. 7. Programs to find a pattern in a given string - general way and brute force technique. Compare the efficiency of algorithms. 8. Programs on recursion like factorial, fibonacci, tower of hanoi. Compare algorithms to find factorial/fibonacci using iterative and recursive approaches. 9. Program to implement file merging, coin change problems using Greedy Algorithm and to understand time complexity. 10. Program to implement merge sort, Straseen"s Matrix Multiplication using D-n-C Algorithm and to understand time complexity. 11. Program to implement fibonacci series, Longest Common Subsequence using dynamic programming and to understand time complexity. Compare it with the general recursive algorithm. 12. Program to implement N-Queen Problem, Binary String generation using Backtracking Strategy and to understand time complexity.
USCSP202	Advanced Python Programming 1. Write a program to Python program to implement various file operations.

	9. Programs to demonstrate inheritance and derived class constructors 10. Programs to demonstrate friend function, inline function, this pointer 11. Programs to demonstrate function overloading and overriding. 12. Programs to demonstrate use of pointers 13. Programs to demonstrate text and binary file handling
USCSP204	Database Systems 1. Conceptual Designing using ER Diagrams (Identifying entities, attributes, keys and relationships between entities, cardinalities, generalization, specialization etc.) 2. Perform the following: - Viewing all databases Creating a Database - Viewing all Tables in a Database - Creating Tables (With and Without Constraints) - Inserting/Updating/Deleting Records in a Table 3. Perform the following: - Altering a Table - Dropping/Truncating/Renaming Tables - Backing up / Restoring a Database 4. Perform the following: - Simple Queries - Simple Queries with Aggregate functions 5. Queries involving - Date Functions - String Functions - Math Functions 6. Join Queries - Inner Join - Outer Join 7. Subqueries - With IN clause - With EXISTS clause 8. Converting ER Model to Relational Model and apply Normalization on database. (Represent entities and relationships in Tabular form, Represent attributes as columns, identifying keys and normalization up to $3^{\text {rd }}$ Normal Form). 9. Views - Creating Views (with and without check option) - Dropping views - Selecting from a view 10. DCL statements - Granting and revoking permissions - Saving (Commit) and Undoing (rollback)

	c. Continuity of functions of two or three variables 8 Partial Derivatives I- a. Partial derivatives of functions, First and Second order partial derivatives, Mixed derivative theorem, Higher order partial derivatives b. Differential for functions of two or three variables c. Local linear approximation for functions of two or three variables 9 Partial Derivatives II - a. Chain rule for functions of two or three variables b. Implicit differentiation c. Directional derivatives and gradient 10 Applications of Partial Derivatives- a. Tangent Planes and Normal Vectors for functions of two or three variables b. Maxima and Minima of Functions of Two Variables NOTE: Above Practical's can also to be implemented using Sage Math/ Geogebra.	
USCSP206	Statistical Methods 1 Probability- a. Examples based on Probability definition: classical, axiomatic b. Examples based on elementary Theorems of probability 2 Conditional probability and independence- a. Examples based on Conditional probability b. Examples based on „Bayes ${ }^{\text {ce }}$ theorem c. Examples based on independence 3 Discrete random variable- a. Probability distribution of discrete random variable b. Probability mass function 4 Continuous random variable- a. Probability distribution of continuous random variable b. Probability density function 5 Mathematical Expectation and Variance- a. Mean of discrete and continuous Probability distribution b. S.D. and variance of discrete and continuous Probability distribution	

Evaluation Scheme

I. Internal Evaluation for Theory Courses - $\mathbf{2 5}$ Marks
(i) Mid-Term Class Test- 15Marks
\square It should be conducted using any learning management system such as
Moodle (Modular object-oriented dynamic learning environment)
\square The test should have $\mathbf{1 5}$ MCQ's which should be solved in a time duration of $\mathbf{3 0}$ minutes.
(ii) Assignment/ Case study/ Presentations- 10 Marks
\square Assignment / Case Study Report / Presentation can be uploaded on any learning management system.

II. External Examination for Theory Courses - $\mathbf{7 5}$ Marks

\square Duration: 2.5 Hours

\square Theory question paper pattern:

	All questions are compulsory.		
Question	Based on	Options	Marks
Q.1	Unit I	Any 4 out of 6	20
Q.2	Unit II	Any 4 out of 6	20
Q.3	Unit III	Any 4 out of 6	20
Q.4	Unit I,II and III	Any 5 out of 6	15

\square All questions shall be compulsory with internal choice within the questions.
\square Each Question maybe sub-divided into subquestions as a, b, c, d, etc. \& the allocation of Marks depends on the weightage of the topic.

III. Practical Examination

\square Each core subjectcarries50 Marks

$$
40 \text { marks + } 05 \text { marks (journal) + } 05 \text { marks (viva) }
$$Duration: 2 Hours for each practical course.Minimum $\mathbf{8 0 \%}$ practical from each core subjects are required to be completed.Certified Journal is compulsory for appearing at the time of Practical Exam

\square The final submission and evaluation of journal in electronic form using a Learning Management System / Platform can be promoted by college.

