Academic Council
Item No: _____

Preamble

This is the third year curriculum in the subject of Computer Science. The revised structure is designed to transform students into technically competent, socially responsible and ethical Computer Science professionals. In these Semesters we have made the advancements in the subject based on the previous Semesters Knowledge.

In the first year basic foundation of important skills required for software development is laid. Second year of this course is about studying core computer science subjects. The third year is the further advancement which covers developing capabilities to design formulations of computing models and its applications in diverse areas.

The proposed curriculum contains two semesters, each Semester contains two Electives: Elective-I and II. Every Elective contains three papers based on specific areas of Computer Science. It also includes one Skill Enhancement paper per semester, helps the student to evaluate his/her computer science domain specific skills and also to meet industry expectations. This revised curriculum has not only taken the specific areas of computer science into consideration but will also give the opportunity to the student to prove his/her ability in the subject practically through the Project Implementation. In Semester V and Semester VI student has to undertake a Project. It can boost his/her confidence and also can encourage the student to perform innovations in the subject as the choice of the Project topic is kept open covering most of the areas of Computer Science subject as per the students interest and the subject they have learned during the Course.

Proposed Curriculum contains challenging and varied subjects aligned with the current trend with the introduction of Machine Intelligence specific subject such as Artificial Intelligence, Information Retrieval. Data Management related subjects such as Cloud Computing and Data Science. Image processing topics such as Game Programming, Digital Image Processing. Introduction of physical world through Architecting of IoT and Wireless Sensor Networks and Mobile Communication. Security domain is also evolved by the introduction of Ethical Hacking, Cyber Forensic and Information and Network Security. To get the hands on experience Linux Server Administration and Web Services topics are included.

In essence, the objective of this syllabus is to create a pool of technologically savvy, theoretically strong, innovatively skilled and ethically responsible generation of computer science professionals. Hope that the teacher and student community of University of Mumbai will accept and appreciate the efforts.

T.Y.B.Sc. (Semester V and VI) Computer Science Syllabus Credit Based Semester and Grading System To be implemented from the Academic year 2018-2019

SEMESTER V							
Course TOPICS Credits L / V							
	Elective-I (Select Any Two)						
USCS501	Artificial Intelligence	3	3				
USCS502	Linux Server Administration	3	3				
USCS503	Software Testing and Quality Assurance	3	3				
	Elective-II (Select Any Two)						
USCS504	Information and Network Security	3	3				
USCS505	Architecting of IoT	3	3				
USCS506	Web Services	3	3				
	Skill Enhancement						
USCS507	Game Programming	2	3				
	Practical						
USCSP501	Practical of Elective-I	2	6				
USCSP502	Practical of Elective-II	2	6				
USCSP503	Project Implementation	1	3				
USCSP504	Practical of Skill Enhancement : USCS507	1	3				

SEMESTER VI				
Course	TOPICS	Credits	L / Week	
	Elective-I (Select Any Two)			
USCS601	Wireless Sensor Networks and Mobile	3	3	
0505001	Communication			
USCS602	Cloud Computing	3	3	
USCS603	Cyber Forensics	3	3	
	Elective-II (Select Any Two)			

USCS604	Information Retrieval	3	3
USCS605	Digital Image Processing	3	3
USCS606	Data Science	3	3
	Skill Enhancement		
USCS607	Ethical Hacking	2	3
	Practical		
USCSP601	Practical of Elective-I	2	6
USCSP601 USCSP602	Practical of Elective-I Practical of Elective-II	2 2	6 6
USCSP601 USCSP602 USCSP603	Practical of Elective-I Practical of Elective-II Project Implementation	2 2 1	6 6 3

SEMESTER V

THEORY

Course:	TOPICS (Credits : 03 Lectures/Week:03)		
USCS501	Artificial Intelligence		
Objectives			
Artificial Ir	telligence (AI) and accompanying tools and techniques bring transformational char	nges	
in the world	l. Machines capability to match, and sometimes even surpass human capability, m	ake	
AI a hot to	bic in Computer Science. This course aims to introduce the learner to this interes	ting	
area.			
Expected I	earning Outcomes:		
After comp	etion of this course, learner should get a clear understanding of AI and different se	arch	
algorithms	used for solving problems. The learner should also get acquainted with different		
learning alg	orithms and models used in machine learning.		
What Is AI: Foundations, History and State of the Art of AI.			
	Intelligent Agents: Agents and Environments, Nature of Environments,		
	Structure of Agents.		
Unit I	Problem Solving by searching: Problem-Solving Agents, Example Problems,	15L	
	Searching for Solutions, Uninformed Search Strategies, Informed (Heuristic)		
	Search Strategies, Heuristic Functions.		
	Learning from Examples: Forms of Learning, Supervised Learning, Learning		
	Decision Trees, Evaluating and Choosing the Best Hypothesis, Theory of		
Unit II	Learning, Regression and Classification with Linear Models, Artificial Neural		
	Networks, Nonparametric Models, Support Vector Machines, Ensemble		
	Learning, Practical Machine Learning		

	Learning probabilistic models: Statistical Learning, Learning with Complete	
	Data, Learning with Hidden Variables: The EM Algorithm. Reinforcement	
Unit III	learning: Passive Reinforcement Learning, Active Reinforcement Learning,	15L
	Generalization in Reinforcement Learning, Policy Search, Applications of	
	Reinforcement Learning.	
Textbook	(s):	

1) Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig, 3rd Edition, Pearson, 2010.

Additional Reference(s):

- Artificial Intelligence: Foundations of Computational Agents, David L Poole, Alan K. Mackworth, 2nd Edition, Cambridge University Press ,2017.
- 2) Artificial Intelligence, Kevin Knight and Elaine Rich, 3rd Edition, 2017
- The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, Springer, 2013

Suggested List of Practical- SEMESTER V

Course: (Credits : 02 Lectures/Week: 06)					
USCSP501	JSCSP501 Practical of Elective-I				
	USCS501: Artificial Intelligence				
Practi	ical shall be implemented in LISP				
1. Imple	ment Breadth first search algorithm for Romanian map problem.				
2. Imple	ment Iterative deep depth first search for Romanian map problem.				
3. Imple	ment A* search algorithm for Romanian map problem.				
4. Imple	ment recursive best-first search algorithm for Romanian map problem.				
5. Imple	ment decision tree learning algorithm for the restaurant waiting problem.				
6. Imple	ment feed forward back propagation neural network learning algorithm for the rest	taurant			
waitin	ng problem.				
7. Imple	ment Adaboost ensemble learning algorithm for the restaurant waiting problem.				
8. Imple	ment Naive Bayes' learning algorithm for the restaurant waiting problem.				
9. Imple	ment passive reinforcement learning algorithm based on adaptive dynamic program	mming			
(ADP) for the 3 by 4 world problem				
10. Imple	ment passive reinforcement learning algorithm based on temporal differences (TD	D) for 3			
by 4 v	vorld problem.				

Scheme of Examination

1. Theory:

I. Internal 25 Marks :

a) Test – 20 Marks

20 marks Test – Duration 40 mins It will be conducted either using any open source learning management system like Moodle (Modular object-oriented dynamic learning environment)

OR A test based on an equivalent online course on the contents of the concerned course (subject) offered by or build using MOOC (Massive Open Online Course) platform.

 b) 5 Marks – Active participation in routine class instructional deliveries Overall conduct as a responsible student, manners, skill in articulation, leadership qualities demonstrated through organizing co-curricular activities, etc.

II. External 75 Marks as per University Guidelines

11. Practical and Project Examination:

There will be separate Practical examination for Elective-I, II, Skill enhancement and project of these Elective-I 100, Elective-II: 100 and Skill Enhancement: 50 and Project Implementation: 50.

In the Practical Examination of Elective-I and II, the student has to perform practical on each of the subjects chosen. The Marking Scheme for each of the Elective is given below:

	Subject Code	Experiment-I	Experiment-II	Total Marks
Elective-I	USCSP501/ USCSP601	Experiment-40+Journal-5 +viva-5 Total:50M	Experiment-40+Journal-5+viva- 5 Total:50M	100 M
Elective-II	USCSP502/ USCSP602	Experiment-40+Journal-5 +viva-5 Total:50M	Experiment-40+Journal-5+viva- 5 Total:50M	100 M

Project Implement ation	USCSP5 03/ USCSP6 03	**Project Evaluation Scheme	50M
Skill	USCSP5	Experiment-40+Journal:5+viva-5	50M
Enhancem	04/		
ent	USCSP6	Total-50M	
	04		
Total Marks			300M

(Certified Journal is compulsory for appearing at the time of Practical Examination)

****Project Evaluation Scheme:**

Presentation	Working of the Project	Quality of the Project	Viva	Documentation
10Marks	10 Marks	10 Marks	10 Marks	10Marks

(Certified Project Document is compulsory for appearing at the time of Project Presentation)
