UNIVERSITY OF MUMBAI

No. UG/ J>Tif **2017**

A reference **is invited to** the Syllabi relating to the B.Sc. degree course, <u>vide</u> this office Circular No. UG/42 of 2016-17, dated 5th August , 2016 and the Principals of the affiliated Colleges in Science are hereby informed that the recommendation made by Ad-hoc-Board of Studies Ln Computer Science at its meeting held on 5/5/2017 has been accepted by the Academic Council at its meeting held on 11.5.2017 <u>vide</u> item No. 4.210 and that in accordance therewith, in revised syllabus as per the Credit Based Semester and Grading System for S.Y.B.Sc Computer Science (Sem III & IV) which is available on the University's website (<u>www.mu.ac.in</u>) and that the same has been brought into force with effect from the academic year 2016-17.

MUMBAI — 400 032 July, 2017

To,

The Principal of the affiliated Colleges in Science and the Head of Recognized Institutions concerned.

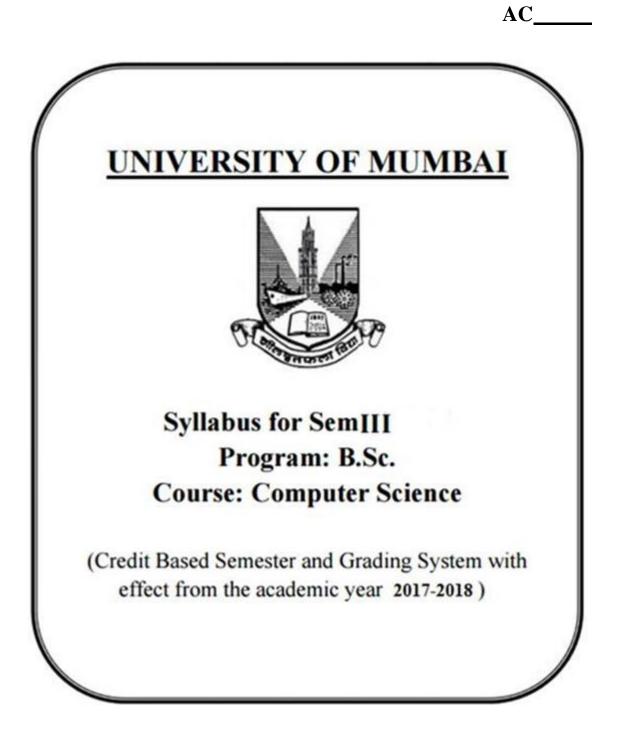
<u>A.C/4.210/11.05.2017</u>

>>Io. UG/)bJ- A of 2017 .M AJ-40*0 032

23H July, 2017

Copy forwarded with compliments for inTorr•.a.tion to

1) The Co-ordinator, Faculty of Science.,


2) The Offg. Director of Board of Examinations and Evaluation,

- 3) The Chairperson, Board of Studies in Botar.y,
- 4) The Director of Board of Studies Development.
- 5) The Professor-cum-Director, Ir.stitute of Distance and Open Leamlng.
- 6) The Co-Ordinator, University Cen.puierization Centre.

. . .. PTO

Circular 2014- I 5/Science/'3

Preamble

The revised and restructured curriculum for the Three-year integrated course is systematically designed considering the current industry needs in terms of skills sets demanded under new technological environment. It also endeavours to align the programme structure and course curriculum with student aspirations and corporate expectations. The proposed curriculum is more contextual, industry affable and suitable to cater the needs of society and nation in present day context.

Second year of this course is about studying core computer science subjects. Theory of Computation course provides understanding of grammar, syntax and other elements of modern language designs. It also covers developing capabilities to design formulations of computing models and its applications in diverse areas.

The course in Operating System satisfies the need of understanding the structure and functioning of system. Programming holds key indispensable position in any curriculum of Computer Science. It is essential for the learners to know how to use object oriented paradigms. There is also one dedicated course Android Developer Fundamentals as a skill enhancement catering to modern day needs of Mobile platforms and applications. The syllabus has Database Systems courses in previous semesters. The course in Database Management Systems is its continuation in third semester. The course has objectives to develop understanding of concepts and techniques for data management along with covers concepts of database at advance level.

The course of Combinatorics and Graph Theory in third semester and the course of Linear Algebra in fourth semester take the previous courses in Mathematics. Graph theory is rapidly moving into the mainstream mainly because of its applications in diverse fields which include can further open new opportunities in the areas of genomics, communications networks and coding theory, algorithms and computations and operations research.

Introducing one of the upcoming concepts Physical Computing and IoT programming will definitely open future area as Embedded Engineer, involvement in IoT projects, Robotics and many more. The RasPi is a popular platform as it offers a complete Linux server in a tiny platform for a very low cost and custom-built hardware with minimum complex hardware builds which is easier for projects in education domain.

S.Y.B.Sc. (Semester III and IV) Computer Science Syllabus Credit Based Semester and Grading System To be implemented from the Academic year 2017-2018

	SEMESTER III				
Course	TOPICS	Credits	L / Week		
USCS301	Theory of Computation	2	3		
USCS302	Core JAVA	2	3		
USCS303	Operating System	2	3		
USCS304	Database Management Systems	2	3		
USCS305	Combinatorics and Graph Theory	2	3		
USCS306	Physical Computing and IoT Programming	2	3		
USCS307	Skill Enhancement: Web Programming	2	3		
USCSP301	USCS302+USCS303+USCS304	3	9		
USCSP302	USCS305+USCS306+USCS307	3	9		

	SEMESTER IV				
Course	TOPICS	Credits	L / Week		
USCS401	Fundamentals of Algorithms	2	3		
USCS402	Advanced JAVA	2	3		
USCS403	Computer Networks	2	3		
USCS404	Software Engineering	2	3		
USCS405	Linear Algebra using Python	2	3		
USCS406	.NET Technologies	2	3		
USCS407	Skill Enhancement: Android Developer Fundamentals	2	3		
USCSP401	USCS401+ USCS402+ USCS403	3	9		
USCSP402	USCS405+ USCS406+ USCS407	3	9		

SEMESTER III

THEORY

Course:	TOPICS (Credits : 02 Lectures/Week:03)		
USCS30	Theory of Computation		
Objectiv	res:		
To prov	de the comprehensive insight into theory of computation by understanding gramm	nar,	
language	s and other elements of modern language design. Also to develop capabilities to dev	sign	
and deve	lop formulations for computing models and identify its applications in diverse area	s.	
Expecte	d Learning Outcomes:		
1. Understand Grammar and Languages			
2. Learn about Automata theory and its application in Language Design			
3. I	3. Learn about Turing Machines and Pushdown Automata		
4. U	Inderstand Linear Bound Automata and its applications		
	Automata Theory: Defining Automaton, Finite Automaton, Transitios and Its		
	properties, Acceptability by Finite Automaton, Nondeterministic Finite State		
	Machines, DFA and NDFA equivalence, Mealy and Moore Machines,		
Unit I	Minimizing Automata.	15L	
	Formal Languges: Defining Grammar, Derivations, Languges generated by		
	Grammar, Comsky Classification of Grammar and Languages, Recursive		
	Enumerable Sets, Operations on Languages, Languages and Automata		
	Regular Sets and Regular Grammar: Regular Grammar, Regular Expressions,		
Unit II	Finite automata and Regular Expressions, Pumping Lemma and its Applications,		
	Closure Properties, Regular Sets and Regular Grammar	15L	
	Context Free Languages: Context-free Languages, Derivation Tree, Ambiguity	15L	
	of Grammar, CFG simplification, Normal Forms, Pumping Lemma for CFG		
	Pushdown Automata: Definitions, Acceptance by PDA, PDA and CFG		

Unit III	 Linear Bound Automata: The Linear Bound Automata Model, Linear Bound Automata and Languages. Turing Machines: Turing Machine Definition, Representations, Acceptability by Turing Machines, Designing and Description of Turing Machines, Turing Machine Construction, Variants of Turing Machine, Undecidability: The Church-Turing thesis, Universal Turing Machine, Halting Droblems. 		
Tutorials	Problem, Introduction to Unsolvable Problems		
	roblems on generating languages for given simple grammar		
	roblems on DFA and NDFA equivalence roblems on generating Regular Expressions		
	roblems on drawing transition state diagrams for Regular Expressions		
	roblems on Regular Sets and Regular Grammar		
	roblems on Ambiguity of Grammar		
	roblems on working with PDA		
	 Problems on working with FDA Problems on working with Turing Machines 		
	roblems on generating derivation trees		
	roblems on Linear Bound Automata/Universal Turing Machine		
T . (1)			
Textbook			
	eory of Computer Science, K. L. P Mishra, Chandrasekharan, PHI,3 rd Edition		
	troductory Theory of Computer Science, E.V. Krishnamurthy, Affiliated East-West Press.		
	al Reference(s): neory of Computation, Kavi Mahesh, Wiley India		
,			
,	Elements of The Theory of Computation, Lewis, Papadimitriou, PHI		
,	troduction to Languages and the Theory of Computation, John E Martin, McGraw-Hill lucation		
	troduction to Theory of Computation, Michel Sipser, Thomson		
7) 111	accuration to Theory of Compatition, Michel Sipser, Thomson		

Evaluation Scheme

I. Internal Exam - 25 Marks

(i) Test - 20 Marks

20 marks Test – Duration 40 mins It will be conducted either using any open source learning management system like Moodle (Modular object-oriented dynamic learning environment)

OR

A test based on an equivalent online course on the contents of the concerned course (subject) offered by or build using MOOC (Massive Open Online Course) platform.

- (ii) 5 Marks Active participation in routine class instructional deliveries
 Overall conduct as a responsible student, manners, skill in articulation, leadership qualities demonstrated through organizing co-curricular activities, etc.
- II. External Exam- 75 Marks
