

		SEMESTER V			
		Theory			
Course	UNIT	TOPICS	Credits	Lectures per Week	
USPH501	Ι	Mathematical Methods in Physics	2.5	4	
	II	Mathematical Methods in Physics	2.5		
	III	Thermal and Statistical Physics			
	IV	Thermal and Statistical Physics			
USPH502	Ι	Solid State Physics			
	II	Solid State Physics	2.5	4	
	III	Solid State Physics			
	IV	Solid State Physics			
USPH503	Ι	Atomic Physics	2.5	4	
	II	Atomic Physics	2.5	4	
	III	Molecular Physics			
	IV	Molecular Physics			
USPH504	Ι	Electrodynamics	0.5		
	II	Electrodynamics	2.5	4	
	III	Electrodynamics			
	IV	Electrodynamics	-		
	1	Practicals	1	1	
USPHP05	Practi	cals of Course USPH501 + Course USPH5	502 2	.5 6	
USPHP06	Practi	cals of Course USPH503 + Course USPH5	504 2	.5 6	
		Project			
USPHPR1	USF	<u>PH501 + USPH502 + USPH503 + USPH50</u>)4	1 4	

T.Y.B.Sc. Physics Syllabus: Credit Based Semester and Grading System to be implemented from the Academic year 2018-2019.

		SEMESTER VI				
		Theory				
Course	UNIT	TOPICS	Cred	its	Lect per Wee	tures k
USPH601	Ι	Classical Mechanics	2.5			4
	II	Classical Mechanics	4.	5		-
	III	Classical Mechanics				
	IV	Classical Mechanics				
USPH602	Ι	Electronics	0.1	-		4
	II	Electronics	2.5	5		4
	III	Electronics				
	IV	Electronics				
USPH603	Ι	Nuclear Physics	2.5	-		4
	II	Nuclear Physics	2.3	5		4
	III	Nuclear Physics				
	IV	Nuclear Physics				
USPH604	Ι	Special Theory of Relativity		-		A
	II	Special Theory of Relativity	2.5	5		4
	III	Special Theory of Relativity				
	IV	Special Theory of Relativity				
	1	Practicals				
USPH605	Practi	cals of Course USPH601 + Course USPH6	02	2.	5	6
USPH606	Practi	cals of Course USPH603 + Course USPH6	04	2.	5	6
	1	Project				
USPHPR2	USF	PH601 + USPH602 + USPH603 + USPH60)4	1	L	4

SCHEME OF THEORY, PRACTICALS AND PROJECT EXAMINATION (SEM- V & VI)

I. Theory: External Examination: 100 marks				arks			
	Each theory paper shall be of THREE hours duration.						
		•	-	ns. All questions are com papers has to be 1.5 tim			
	Q – I :	From Ur	nit – I				
	Q – II :	From Ur	nit – II				
	Q – III :	From Ur	nit - III	t - III			
	Q – IV :	From Ur	nit - IV				
	Q – V :		sist of questions from a ge of marks allotted to o	all the FOUR Units with each Unit.	equal		
II.		Practicals and Project: The External Practical Examination will be conducted as per the following scheme.					
Sr. No.	Particula	ars of Ext	ternal Practical and P	roject Examination	Total Marks		
1	Laborato	ry Work	Experiment-1= 60 M	Experiment-2 = 60 M	120		
2	Journal		10	10	20		
3	Viva		10	10	20		
				Sub Total =	160		
III.	Project		Internal Examiner (20 M)	External Examiner (20 M)	40		
	<u> </u>		1	Grand Total	200		

Passing Criteria:

- 1. A student should be considered as passed in the practical examination provided he/she fulfills the following passing criteria
 - a. Minimum of 20 marks in each practical component i.e. **USPHP07** and **USPHP08**.
 - b. Minimum of 10 marks in Project Component
 - c. And cumulatively scoring 80 marks (i.e. 40 % of 200 marks)

Component	Maximum Marks	Minimum Passing Marks
USPHP07	80	20
USPHP08	80	20
Project 2	40	10
Total	200	80

Scheme of Examination:

- 1. The University (external) examination for Theory and Practical shall be conducted at the end of each Semester and the evaluation of Project work at the end of the each Semester.
- 2. The candidate should appear for **THREE** Practical sessions of **three hours each** as part of his/her Practical course examination.
- 3. The candidates shall appear for external examination of 2 practical courses each carrying 80 marks and presentation of project work carrying 20 marks at the end of each semester.
- 4. The candidates shall also appear for internal presentation of project work carrying 20 marks at the end of each semester.
- 5. The candidate shall prepare and submit for practical examination a certified Journal based on the practical course with **6** experiments from each group.
- The certified journal must contain a minimum of 12 regular experiments (6 from each group), with minimum 5 demonstration experiments in semester VI. A separate index and certificate in journal is must for each semester course.
- 7. At the time of practical examination, the candidate must also submit the certified Project Report prepared as per the guidelines given in the Syllabus.

A candidate will be allowed to appear for the practical examination only if the candidate submits a certified journal of TYBSc Physics or a certificate from the Head of the Department to the effect that the candidate has completed the practical course of TYBSc Physics as per the minimum requirements and a project completion report duly certified by the project in-charge and Head of the Department.

III. Visits: Visits to industry, national research laboratories, and scientific exhibitions should be encouraged.

PRACTICALS - SEMESTER V

The T. Y. B. Sc. Syllabus integrates the regular practical work with a series of skill experiments and the project. There will be separate passing head for project work. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

i)	Understanding relevant concepts.
ii)	Planning of the experiments
iii)	Layout and adjustments of the equipments
iv)	Understanding designing of the experiments
v)	Attempts to make the experiments open ended
vi)	Recording of observations and plotting of graphs
vii)	Calculation of results and estimation of possible errors in the observation of results

i) Regular Physics Experiments: A minimum of **06** experiments from each of the course are to be performed and reported in the journal.

ii) Skill Experiments: All the skill experiments are compulsory and must be reported in the journal. Skills will be tested during the examination through viva or practical.

The certified journal must contain a minimum of **12** regular experiments (**06** from each group), **with ALL** Skill experiments in semester V. A separate index and certificate in journal is must for each semester course.

iii) Project Includes:

a)	Review articles/ PC Simulation on any concept in Physics/ Comparative & differentiative study/Improvement in the existing experiment (Design and fabrication concept) /Extension of any regular experiment/Attempt to make experiment open-ended/Thorough survey of existing active components (devices, ICs, methods, means, technologies, generations, applications etc. / any innovative projects having the concept of physics.
b)	Two students (maximum) per project.
c)	 For evaluation of project, the following points shall be considered Working model (Experimental or Concept based simulation) Understanding of the project Data collection Data Analysis Innovation/Difficulty Report

There will be **THREE** turns of **3Hrs each** for the examination of practical courses.

	SEMESTER V			
	PRACTICAL COURSE: USPHP05			
Sr. No.	Name of the Experiment			
1	Determination of 'g' by Kater's pendulum			

1	Estimation of errors from actual experimental data
Sr. No.	Name of the Experiment
	SKILL EXPERIMENTS
12	Counters Mod 2, 5, 10 (2 x 5, 5 x 2)
11	LM 317 as constant current source
10	Application of IC 555 timer as a ramp generator (BB)
9	Design and study of first order active high pass filter circuit (BB)
8	Design and study of first order active low pass filter circuit (BB)
7	Design and study of Wien bridge oscillator
6	Design and study of transistorized astable multivibrator (BB)
5	Band gap energy of Ge diode
4	L/C by Maxwell's bridge
3	Hysteresis loop by CRO
2	Capacitance by parallel bridge
1	Mutual inductance by BG.
Sr. No.	Name of the Experiment
	PRACTICAL COURSE: USPHP06
12	Velocity of sound in air using CRO
11	R. I. by total internal reflection
10	Determination of e/m by Thomson's method
9	Determination of wavelength by Step slit
8	Edser's 'A' pattern
7	Determination of Rydberg's constant
6	Searle's Goniometer
5	Logarithmic decrement
4	Determination of dielectric constant
	-
2	Surface tension of soap solutionElastic constants of a rubber tube

2	Soldering and testing of an astable multivibrator (Tr./IC555) circuit on PCB
3	Optical Leveling of Spectrometer
4	Schuster's method
5	Laser beam profile
6	Use of electronic balance: Find the density of a solid cylinder
7	Dual trace CRO: Phase shift measurement
8	C1/C2 by B G
9	Internal resistance of voltage and current source
10	Use of DMM to test diode, transistor and $\boldsymbol{\beta}$ factor

Refer	References:		
1.	Advanced course in Practical Physics: D. Chattopadhya, PC. Rakshit &		
	B. Saha (8 th Edition) Book & Allied Pvt. Ltd.		
2.	BSc Practical Physics: Harnam Singh. S. Chand & Co. Ltd. – 2001.		
3.	A Text book of Practical Physics: Samir Kumar Ghosh New Central Book		
	Agency (4 th edition).		
4.	B Sc. Practical Physics: C. L. Arora (1st Edition) – 2001 S. Chand & Co.		
	Ltd.		
5.	Practical Physics: C. L. Squires – (3rd Edition) Cambridge University		
	Press.		
6.	University Practical Physics: D C Tayal. Himalaya Publication.		
7.	Advanced Practical Physics: Worsnop & Flint.		

SEMESTER VI

The T. Y. B. Sc. Syllabus integrates the regular practical work with a series of demonstration experiments and the project. There will be separate passing head for project work. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

i)	Understanding relevant concepts.
ii)	Planning of the experiments.
iii)	Layout and adjustments of the equipments
iv)	Understanding designing of the experiments
v)	Attempts to make the experiments open ended
vi)	Recording of observations and plotting of graphs
vii)	Calculation of results and estimation of possible errors in the observation of results.

i) Regular Physics Experiments: A minimum of **06** experiments from each of the practical course are to be performed and reported in the journal.

ii) Demonstration Experiments: The demonstration experiments are to be performed by the teacher in the laboratory and students should be encouraged to participate and take observation wherever possible.

Demonstration experiments are designed to bring about interest and excitement in Physics. Students are required to enter details of these 'demonstration' experiments in their journal.

The certified journal must contain a minimum of **12** regular experiments (**06** from each practical course), **MINIMUM 06** demonstration experiments in semester VI. A separate index and certificate in journal is must for each course in each semester.

iii) Project Details:

a)	Project Includes: Review articles/Simulation on PC on any concept in Physics/ Comparative & differentiative study/Improvement in the existing experiment (Design and fabrication concept) /Extension of any regular experiment/Attempt to make experiment open-ended/Thorough survey of existing active components (devices, ICs, methods, means, technologies, generations, applications etc. / any innovative projects using the concept of physics.
b)	Students/project : 02 (maximum)
c)	 Evaluation of the project: The following points shall be considered. Working model (Experimental or Concept based simulation) Understanding of the project Data collection Data Analysis Innovation/difficulty Report

There will be **THREE** turns of **three hours each** for the examination of practical courses.

SEMESTER VI		
PRACTICAL COURSE: USPHP07		
Sr. No.	Name of the Experiment	
1	Surface tension of mercury by Quincke's method	
2	Thermal conductivity by Lee's method	
3	Study of JFET characteristics	
4	JFET as a common source amplifier	
5	JFET as switch (series and shunt)	
6	UJT characteristics and relaxation oscillator	
7	Study of Pulse width modulation (BB)	

8	Study of Pulse position modulation (BB)	
9	Determination of h/e by photocell	
10	R. P. of Prism	
11	Double refraction	
12	Lloyd's single mirror: determination of wavelength	
	PRACTICAL COURSE: USPHP08	
Sr. No.	Name of the Experiment	
1	Determination of M/C by using BG	
2	Self-inductance by Anderson's bridge	
3	Hall effect	
4	Solar cell characteristics and determination of V_{oc} , I_{sc} and P_{max}	
5	Design and study of transistorized monostable multivibrator (BB)	
6	Design and study of transistorized bistable multivibrator (BB)	
7	Application of Op-Amp as a window comparator	
8	Application of Op-Amp as a Log amplifier	
9	Application of IC 555 as a voltage to frequency converter (BB)	
10	Application of IC 555 as a voltage to time converter (BB)	
11	LM-317 as variable voltage source	
12	Shift register	
DEMONSTRATION EXPERIMENTS		
Sr. No.	Name of the Experiment	
1	Open CRO, Power Supply, and Signal Generator: block diagrams	
2	Data sheets: Diodes, Transistor, Op-amp & Optoelectronic devices	
3	Zeeman Effect	
4	Michelson's interferometer	
5	Constant deviation spectrometer (CDS)	
6	Digital storage oscilloscope (DSO)	
7	Determination of Op-Amp parameters (offset voltage, slew rate,	

		input impedance, output impedance, A _{CM})
8		Transformer (theory, construction and working), types of
		transformers and energy losses associated with them.
9		Use of LCR meter
10		Lux meter / Flux meter
References:		
1.	Advanced course in Practical Physics: D. Chattopadhya, PC. Rakshit &	
	B. Saha (8 th Edition) Book & Allied (P) Ltd.	
2.	BSc Practical Physics: Harnam Singh. S. Chand & Co. Ltd 2001.	
3.	A Text book of Practical Physics: Samir Kumar Ghosh New Central Boo	
	Agency (4 th edition).	
4.	B Sc. Practical Physics: C. L. Arora (1 st Edition) – 2001 S. Chand & Co.	
5.	Practical Physics: C. L. Squires – (3rd Edition) Cambridge Univ. Press.	
6.	University Practical Physics: D C Tayal, Himalaya Publication.	
7.	Advanced Practical Physics: Worsnop & Flint.	