

Semester – I			
Course Code	Course Code Course Title		
PSIT101	Research in Computing	4	
PSIT102	Data Science	4	
PSIT103	Cloud Computing	4	
PSIT104	Soft Computing Techniques	4	
PSIT1P1	Research in Computing Practical	2	
PSIT1P2	Data Science Practical	2	
PSIT1P3	Cloud Computing Practical	2	
PSIT1P4	Soft Computing Techniques Practical	2	
	Total Credits	24	

Semester – II		
Course Code	Course Title	Credits
PSIT201	Big Data Analytics	4
PSIT202	Modern Networking	4
PSIT203	Microservices Architecture	4
PSIT204	Image Processing	4
PSIT2P1	Big Data Analytics Practical	2
PSIT2P2	Modern Networking Practical	2
PSIT2P3	Microservices Architecture Practical	2
PSIT2P4	Image Processing Practical	2
	Total Credits	24

Program Specific Outcomes

PSO1: Ability to apply the knowledge of Information Technology with recent trends aligned with research and industry.

PSO2: Ability to apply IT in the field of Computational Research, Soft Computing, Big Data Analytics, Data Science, Image Processing, Artificial Intelligence, Networking and Cloud Computing.

PSO3: Ability to provide socially acceptable technical solutions in the domains of Information Security, Machine Learning, Internet of Things and Embedded System, Infrastructure Services as specializations.

PSO4: Ability to apply the knowledge of Intellectual Property Rights, Cyber Laws and Cyber Forensics and various standards in interest of National Security and Integrity along with IT Industry.

PSO5: Ability to write effective project reports, research publications and content development and to work in multidisciplinary environment in the context of changing technologies.

SEMESTER II

M. Sc (Information Tecl	Semeste	r – II	
Course Name: Modern Networking		Course C	ode: PSIT202
Periods per week	Lectures	4	
1 Period is 60 minutes			
	Credits	4	
		Hours	Marks
Evaluation System	Theory Examination	21 /2	60
	Theory Internal		40

Objectives	 To understand the state-of-the-art in network protocols, architectures and applications. Analyze existing network protocols and networks. Develop new protocols in networking To understand how networking research is done
	 To investigate novel ideas in the area of Networking via term-long research
	projects.

Pre requisites Fundamentals of Networking

Unit	Details	Lectures
I	Modern Networking Elements of Modern Networking The Networking Ecosystem ,Example Network Architectures,Global Network Architecture,A Typical Network Hierarchy Ethernet Applications of Ethernet Standards Ethernet Data Rates Wi-Fi Applications of Wi-Fi,Standards Wi-Fi Data Rates 4G/5G Cellular First Generation Second Generation, Third Generation Fourth Generation Fifth Generation, Cloud Computing Cloud Computing Concepts The Benefits of Cloud Computing Cloud Networking Cloud Storage, Internet of Things Things on the Internet of Things, Evolution Layers of the Internet of Things, Network Convergence Unified Communications, Requirements and Technology Types of Network and Internet Traffic,Elastic Traffic,Inelastic Traffic, Real-Time Traffic Characteristics Demand: Big Data, Cloud Computing, and Mobile TrafficBig Data Cloud Computing,Mobile Traffic, Requirements: QoS and QoE,,Quality of Service,Quality of Experience, Routing Characteristics, Packet Forwarding, Congestion Control ,Effects of Congestion,Congestion Control Techniques, SDN and NFV Software- Defined Networking,Network Functions Virtualization Modern Networking Elements	12
II	Software-Defined Networks SDN: Background and Motivation, Evolving Network Requirements Demand Is Increasing, Supply Is IncreasingTraffic Patterns Are More ComplexTraditional Network Architectures are Inadequate, The SDN Approach Requirements SDN Architecture Characteristics of Software-	12

	Defined Networking, SDN- and NFV-Related Standards Standards-	
	Developing Organizations Industry Consortia Open Development	
	Initiatives, SDN Data Plane and OpenFlow SDN Data Plane, Data	
	Plane Functions Data Plane Protocols OpenFlow Logical Network	
	Device Flow Table Structure Flow Table Pipeline, The Use of Multiple	
	Tables Group Table OpenFlow Protocol, SDN Control Plane	
	SDN Control Plane Architecture Control Plane Functions, Southbound	
	Interface Northbound InterfaceRouting, ITU-T Model, OpenDaylight	
	OpenDaylight Architecture OpenDaylight Helium, REST REST	
	Constraints Example REST API, Cooperation and Coordination	
	Among Controllers, Centralized Versus Distributed Controllers, High-	
	Availability Clusters Federated SDN Networks, Border Gateway	
	Protocol Routing and QoS Between Domains, Using BGP for QoS	
	Management IETF SDNi OpenDaylight SNDi SDN Application Plane	
	SDN Application Plane Architecture Northbound Interface Network	
	Services Abstraction Layer Network Applications, User Interface,	
	Network Services Abstraction Layer Abstractions in SDN, Frenetic	
	Traffic Engineering PolicyCop Measurement and Monitoring Security	
	OpenDaylight DDoS Application Data Center Networking, Big Data	
	over SDN Cloud Networking over SDN Mobility and Wireless	
	Information-Centric Networking CCNx, Use of an Abstraction Layer	
III	Virtualization, Network Functions Virtualization: Concepts and	
	Architecture, Background and Motivation for NFV, Virtual Machines	
	The Virtual Machine Monitor, Architectural Approaches Container	
	Virtualization, NFV Concepts Simple Example of the Use of NFV,	
	NFV Principles High-Level NFV Framework, NFV Benefits and	
	Requirements NFV Benefits, NFV Requirements, NFV Reference	
	Architecture NFV Management and Orchestration, Reference Points	
	Implementation, NFV Functionality, NFV Infrastructure, Container	
	Interface, Deployment of NFVI Containers, Logical Structure of NFVI	
	Domains, ComputeDomain, Hypervisor Domain, Infrastructure	
	Network Domain, Virtualized Network Functions, VNF	
	Interfaces, VNFC to VNFC Communication, VNF Scaling, NFV	12
	Management and Orchestration, Virtualized Infrastructure	
	Manager, Virtual Network Function Manager, NFV Orchestrator,	
	Repositories, Element Management, OSS/BSS, NFV Use Cases	
	Architectural Use Cases, Service-Oriented Use Cases, SDN and NFV	
	Network Virtualization, Virtual LANs, The Use of Virtual	
	LAINS, Defining VLAINS, Communicating VLAN Membership, IEEE	
	302.1Q VLAN Standard, Nested VLANS, OpenFlow VLAN Support,	
	Virtual Private Networks, IPsec VPNs, MPLS VPNs, Network	
	virtualization, Simplified Example, Network virtualization	
	Architecture, Benefits of Network Virtualization, OpenDaylight's	
	virtual Tenant Network, Software-Defined Infrastructure, Software-	
	Denned Storage, SDI Architecture	

IV	Defining and Supporting User Needs, Quality of Service, Background,	
	QoS Architectural Framework, Data Plane, Control Plane, Management	
	Plane, Integrated Services Architecture, ISA Approach	
	ISA Components, ISA Services, Queuing Discipline, Differentiated	
	Services, Services, DiffServ Field, DiffServ Configuration and	
	Operation, Per-Hop Behavior, Default Forwarding PHB, Service Level	
	Agreements, IP Performance Metrics, OpenFlow QoS Support, Queue	
	Structures, Meters, QoE: User Quality of Experience, Why	
	QoE?, Online Video Content Delivery, Service Failures Due to	
	Inadequate QoE Considerations QoE-Related Standardization Projects,	
	Definition of Quality of Experience, Definition of Quality, Definition	
	of Experience Quality Formation Process, Definition of Quality of	
	Experience, QoE Strategies in Practice, The QoE/QoS Layered Model	
	Summarizing and Merging the ,QoE/QoS Layers, Factors Influencing	
	QoE, Measurements of QoE, Subjective Assessment, Objective	12
	Assessment, End-User Device Analytics, Summarizing the QoE	14
	Measurement Methods, Applications of QoE Network Design	
	Implications of QoS and QoE Classification of QoE/ QoS Mapping	
	Models, Black-Box Media-Based QoS/QoE Mapping Models, Glass-	
	Box Parameter-Based QoS/QoE Mapping Models, Gray-Box QoS/QoE	
	Mapping Models, Tips for QoS/QoE Mapping Model Selection, IP-	
	Oriented Parameter-Based QoS/QoE Mapping Models, Network Layer	
	QoE/QoS Mapping Models for Video Services, Application Layer	
	QoE/QoS Mapping Models for Video Services Actionable QoE over	
	IP-Based Networks, The System-Oriented Actionable QoE Solution,	
	The Service-Oriented Actionable QoE Solution, QoE Versus QoS	
	Service Monitoring, QoS Monitoring Solutions, QoE Monitoring	
	Solutions, QoE-Based Network and Service Management, QoE-Based	
	Management of VoIP Calls, QoE-Based Host-Centric Vertical	
X 7	Handover, QoE-Based Network-Centric Vertical Handover	
V	Modern Network Architecture: Clouds and Fog, Cloud Computing,	
	Basic Concepts, Cloud Services, Software as a Service, Platform as a	
	Service, initiastructure as a Service, Other Cloud Services, Xaas, Cloud	
	Lepioyment Models, Public Cloud Private Cloud Community Cloud, Hybrid Cloud, Cloud, Architecture, NIST, Cloud, Computing, Peference	
	Architecture ITL-T Cloud Computing Reference Architecture SDN and	
	NFV Service Provider Perspective Private Cloud Perspective ITU-T	
	Cloud Computing Functional Reference Architecture. The Internet of	
	Things: Components The IoT Era Begins. The Scope of the Internet of	
	Things Components of IoT-Enabled Things, Sensors, Actuators,	12
	Microcontrollers, Transceivers, RFID, The Internet of Things:	
	Architecture and Implementation, IoT Architecture,ITU-T IoT	
	Reference Model, IoT World Forum Reference Model, IoT	
	Implementation, IoTivity, Cisco IoT System, ioBridge, Security	
	Security Requirements, SDN Security Threats to SDN, Software-	
	Defined Security, NFV Security, Attack Surfaces, ETSI Security	
	Perspective, Security Techniques, Cloud Security, Security Issues and	
	Concerns, Cloud Security Risks and Countermeasures, Data Protection	

in the Cloud, Cloud Securityas a Service, Addressing Cloud Computer	
Security Concerns, IoT Security, The Patching Vulnerability, IoT	
Security and Privacy Requirements Defined by ITU-TAn IoT Security	
Framework, Conclusion	

Books a	Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year	
1.	Foundations of Modern	William	Addison-		October	
	Networking: SDN, NFV,	Stallings	Wesley		2015	
	QoE, IoT, and Cloud		Professional			
2.	SDN and NFV Simplified	Jim Doherty	Pearson			
	A Visual Guide to		Education,			
	Understanding Software		Inc			
	Defined Networks and					
	Network Function					
	Virtualization					
3.	Network Functions	Rajendra	Addison-			
	Virtualization (NFV)	Chayapathi	Wesley			
	with a Touch of SDN	Syed Farrukh				
		Hassan				
4.	CCIE and CCDE Evolving	Brad dgeworth,	Pearson		2019	
	Technologies Study	Jason Gooley,	Education,			
	Guide	Ramiro Garza	Inc			
		Rios				

Evaluation Scheme

Internal Evaluation (40 Marks)

The internal assessment marks shall be awarded as follows:

- 1. 30 marks (Any one of the following):
 - a. Written Test or
 - b. SWAYAM (Advanced Course) of minimum 20 hours and certification exam completed or
 - c. NPTEL (Advanced Course) of minimum 20 hours and certification exam completed or
 - d. Valid International Certifications (Prometric, Pearson, Certiport, Coursera, Udemy and the like)
 - e. One certification marks shall be awarded one course only. For four courses, the students will have to complete four certifications.
- 2. 10 marks

The marks given out of 40 for publishing the research paper should be divided into four course and should awarded out of 10 in each of the four course.

Q1.	Attempt <u>any two</u> of the following:	16
a.		
b.		
c.		
d.		
Q2.	Attempt any two of the following:	14
a.		
b.		
с.		
d.		

i. Suggested format of Question paper of 30 marks for the written test.

 ii. 10 marks from every course coming to a total of 40 marks, shall be awarded on publishing of research paper in UGC approved Journal with plagiarism less than 10%. The marks can be awarded as per the impact factor of the journal, quality of the paper, importance of the contents published, social value.

External Examination: (60 marks)

	All questions are compulsory	
Q1	(Based on Unit 1) Attempt <u>any two</u> of the following:	12
a.		
b.		
c.		
d.		
Q2	(Based on Unit 2) Attempt <u>any two</u> of the following:	12
Q3	(Based on Unit 3) Attempt <u>any two</u> of the following:	12
Q4	(Based on Unit 4) Attempt <u>any two</u> of the following:	12
Q5	(Based on Unit 5) Attempt <u>any two</u> of the following:	12

Practical Evaluation (50 marks)

A Certified copy journal is essential to appear for the practical examination.

1.	Practical Question 1	20
2.	Practical Question 2	20
3.	Journal	5
4.	Viva Voce	5

OR

1.	Practical Question	40
2.	Journal	5
3.	Viva Voce	5