UNIVERSITY OF MUMBAI

Syllabus for M.Sc. Part I (Semester I and II)

Programme: M.Sc.

Subject: Information Technology

(Choice Based Credit System with effect from the academic year 2019 – 2020)

Semester – I				
Course Code	Course Code Course Title			
PSIT101	Research in Computing	4		
PSIT102	Data Science	4		
PSIT103	Cloud Computing	4		
PSIT104	Soft Computing Techniques	4		
PSIT1P1	Research in Computing Practical	2		
PSIT1P2	Data Science Practical	2		
PSIT1P3	Cloud Computing Practical	2		
PSIT1P4	Soft Computing Techniques Practical	2		
	Total Credits	24		

Semester – II			
Course Code	Course Title	Credits	
PSIT201	Big Data Analytics	4	
PSIT202	Modern Networking	4	
PSIT203	Microservices Architecture	4	
PSIT204	Image Processing	4	
PSIT2P1	Big Data Analytics Practical	2	
PSIT2P2	Modern Networking Practical	2	
PSIT2P3	Microservices Architecture Practical	2	
PSIT2P4	Image Processing Practical	2	
	Total Credits	24	

Program Specific Outcomes

PSO1: Ability to apply the knowledge of Information Technology with recent trends aligned with research and industry.

PSO2: Ability to apply IT in the field of Computational Research, Soft Computing, Big Data Analytics, Data Science, Image Processing, Artificial Intelligence, Networking and Cloud Computing.

PSO3: Ability to provide socially acceptable technical solutions in the domains of Information Security, Machine Learning, Internet of Things and Embedded System, Infrastructure Services as specializations.

PSO4: Ability to apply the knowledge of Intellectual Property Rights, Cyber Laws and Cyber Forensics and various standards in interest of National Security and Integrity along with IT Industry.

PSO5: Ability to write effective project reports, research publications and content development and to work in multidisciplinary environment in the context of changing technologies.

SEMESTER I

M. Sc (Information Tecl	Semest	er – I	
Course Name: Soft Computing Techniques		Course	Code: PSIT104
Periods per week	Lectures		4
1 Period is 60 minutes			
	Credits	4	
		Hours Marks	
Evaluation System	Theory Examination	21/2 60	
	Theory Internal	40	

Objectives	Soft computing concepts like fuzzy logic, neural networks and genetic		
	algorithm, where Artificial Intelligence is mother branch of all.		
	• All these techniques will be more effective to solve the problem		
	efficiently		

Pre requisites	Basic concepts of Artificial Intelli	igence. Knowledge of Algorithms

Unit	Details	Lectures
I	Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques, Fuzzy Computing, Neural Computing, Genetic Algorithms, Associative Memory, Adaptive Resonance Theory, Classification, Clustering, Bayesian Networks, Probabilistic reasoning, applications of soft computing.	12
II	Artificial Neural Network: Fundamental concept, Evolution of Neural Networks, Basic Models, McCulloh-Pitts Neuron, Linear Separability, Hebb Network. Supervised Learning Network: Perceptron Networks, Adaptive Linear Neuron, Multiple Adaptive Linear Neurons, Backpropagation Network, Radial Basis Function, Time Delay Network, Functional Link Networks, Tree Neural Network. Associative Memory Networks: Training algorithm for pattern Associative Memory Networks: Training algorithm for pattern Association, Autoassociative memory network, hetroassociative memory network, bi-directional associative memory, Hopfield networks, iterative autoassociative memory networks, temporal associative memory networks.	12
III	UnSupervised Learning Networks: Fixed weight competitive nets, Kohonen self-organizing feature maps, learning vectors quantization, counter propogation networks, adaptive resonance theory networks. Special Networks: Simulated annealing, Boltzman machine, Gaussian Machine, Cauchy Machine, Probabilistic neural net, cascade correlation network, cognition network, neo-cognition network, cellular neural network, optical neural network Third Generation Neural Networks: Spiking Neural networks, convolutional neural networks, deep learning neural networks, extreme learning machine model.	12

IV	Introduction to Fuzzy Logic, Classical Sets and Fuzzy sets:	
	Classical sets, Fuzzy sets.	
	Classical Relations and Fuzzy Relations:	
	Cartesian Product of relation, classical relation, fuzzy relations,	
	tolerance and equivalence relations, non-iterative fuzzy sets.	
	Membership Function: features of the membership functions,	12
	fuzzification, methods of membership value assignments.	
	Defuzzification: Lambda-cuts for fuzzy sets, Lambda-cuts for fuzzy	
	relations, Defuzzification methods.	
	Fuzzy Arithmetic and Fuzzy measures: fuzzy arithmetic, fuzzy	
	measures, measures of fuzziness, fuzzy integrals.	
V	Fuzzy Rule base and Approximate reasoning:	
	Fuzzy proportion, formation of rules, decomposition of rules,	
	aggregation of fuzzy rules, fuzzy reasoning, fuzzy inference systems,	
	Fuzzy logic control systems, control system design, architecture and	
	operation of FLC system, FLC system models and applications of FLC	
	System.	
	Genetic Algorithm: Biological Background, Traditional optimization	
	and search techniques, genetic algorithm and search space, genetic	
	algorithm vs. traditional algorithms, basic terminologies, simple genetic	
	algorithm, general genetic algorithm, operators in genetic algorithm,	12
	stopping condition for genetic algorithm flow, constraints in genetic	
	algorithm, problem solving using genetic algorithm, the schema	
	theorem, classification of genetic algorithm, Holland classifier systems,	
	genetic programming, advantages and limitations and applications of	
	genetic algorithm.	
	Differential Evolution Algorithm, Hybrid soft computing techniques –	
	neuro – fuzzy hybrid, genetic neuro-hybrid systems, genetic fuzzy	
	hybrid and fuzzy genetic hybrid systems.	
	nyona ana razzy genetic nyona systems.	

Books ar	nd References:				
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Artificial Intelligence and	Anandita Das	SPD	3rd	2018
	Soft Computing	Battacharya			
2.	Principles of Soft computing	S.N.Sivanandam	Wiley	3 rd	2019
		S.N.Deepa			
3.	Neuro-Fuzzy and Soft	J.S.R.Jang,	Prentice		2004
	Computing	C.T.Sun and	Hall of		
		E.Mizutani	India		
4.	Neural Networks, Fuzzy	S.Rajasekaran,	Prentice		2004
	Logic and Genetic	G. A.	Hall of		
	Algorithms: Synthesis &	Vijayalakshami	India		
	Applications				
5.	Fuzzy Logic with	Timothy J.Ross	McGraw-		1997
	Engineering Applications		Hill		

6.	Genetic Algorithms: Search,	Davis	Addison	1989
	Optimization and Machine	E.Goldberg	Wesley	
	Learning			
7.	Introduction to AI and	Dan W.	Prentice	2009
	Expert System	Patterson	Hall of	
			India	

Evaluation Scheme

Internal Evaluation (40 Marks)

The internal assessment marks shall be awarded as follows:

- 1. 30 marks (Any one of the following):
 - a. Written Test or
 - b. SWAYAM (Advanced Course) of minimum 20 hours and certification exam completed or
 - c. NPTEL (Advanced Course) of minimum 20 hours and certification exam completed or
 - d. Valid International Certifications (Prometric, Pearson, Certiport, Coursera, Udemy and the like)
 - e. One certification marks shall be awarded one course only. For four courses, the students will have to complete four certifications.
- 2. 10 marks

The marks given out of 40 for publishing the research paper should be divided into four course and should awarded out of 10 in each of the four course.

i. Suggested format of Question paper of 30 marks for the written test.

Q1.	Attempt <u>any two</u> of the following:	16
a.		
b.		
c.		
d.		
Q2.	Attempt any two of the following:	14
a.		
b.		
c.		
d.		

ii. 10 marks from every course coming to a total of 40 marks, shall be awarded on publishing of research paper in UGC approved Journal with plagiarism less than 10%. The marks can be awarded as per the impact factor of the journal, quality of the paper, importance of the contents published, social value.

External Examination: (60 marks)

	All questions are compulsory	
Q1	(Based on Unit 1) Attempt <u>any two</u> of the following:	12
a.		
b.		
c.		
d.		
Q2	(Based on Unit 2) Attempt <u>any two</u> of the following:	12
Q3	(Based on Unit 3) Attempt <u>any two</u> of the following:	12
Q4	(Based on Unit 4) Attempt <u>any two</u> of the following:	12
Q5	(Based on Unit 5) Attempt <u>any two</u> of the following:	12

Practical Evaluation (50 marks)

A Certified copy journal is essential to appear for the practical examination.

1.	Practical Question 1	20
2.	Practical Question 2	20
3.	Journal	5
4.	Viva Voce	5

OR

1.	Practical Question	40
2.	Journal	5
3.	Viva Voce	5